

Duality Theory.

Aim: Given a projective variety X define a sheaf wx such that $H'(X,F) \simeq H^{h-1}(X, Home_{x}(F, w_{x}))^{Y}$ holds for every Cohen-Macaulay sheaf J. dualizing sheaf Serre duality: H" (IP", F) is dual to (F q-coh). Hom pr (F, Oppn (Kipn)) are dual vector spaces If F is locally free, then $H^{i}(\mathbb{P}^{n}, \mathcal{F}) \simeq H^{n-i}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(\mathbb{K}_{\mathbb{P}^{n}}) \otimes \mathcal{F}^{*})^{\vee}$ Dualizing sheaf: Wx coherent on X with a surjection $Trace x : H^n(X, wx) \longrightarrow K$ such that for every F cohorent, Tracex induces 2 K - 150morphism: $Hom_{K}(\mathcal{F}, w_{X}) \cong Hom(H^{n}(X, \mathcal{F}), \kappa)$ The pair (WX, Trace X) is unique if it exists.

Proposition: Let $f: X \longrightarrow Y$ be a finite morphism F coherent sheet on X and G coherent sheet on Y. f' G := Hom or (f * Ox, G) with the natural Ox-module structure (1) There exists a fx (9x - 150 morphism f* Home, (F, fg) ~ Homer (f*F,g). (2) In particular, there is a natural K-isomorphism: $H_{om_{\chi}}(\mathcal{F}, f'g) = H_{om_{\chi}}(f_*\mathcal{F}, g).$ Proof: X = Spec A, Y = Spec B, $M = \Gamma(x, \mathcal{P}), N = \Gamma(r, g).$ $\operatorname{Hom}_{A}(M, \operatorname{Hom}_{B}(A, N)) \simeq \operatorname{Hom}_{B}(M, N)$ Ψ ψ Ψ Ø ψ cm) : α → φ cams for every a e A and me M.

surjedive
Proposition: Let
$$f: X \to Y'$$
 be a finite morphism
of proper schemes both of pure dimension n. If W_Y exists,
then W_X exists and $W_X \cong f'W_Y$.
Proof: Define $W_X := f'W_Y$.
Hom $_X(\mathcal{F}, W_X) \cong$ Hom $_X(\mathcal{F}, f'W_Y)$ W_Y is a right
 \cong Hom $_Y(f_A\mathcal{F}, W_Y)$ adjoint for
 $Hom_Y(f_A\mathcal{F}, W_Y)$ adjoint for
 $Hom_Y(f_A\mathcal{F}, W_Y)$ W_Y is a dullog
 \cong H^a $(Y, f_X\mathcal{F})^Y$ W_Y is a dullog
 \Rightarrow H^a $(X, \mathcal{F})^Y$.
Rⁱf_* $\mathcal{F} = o$ for i>o.
Corollary: W_X exists and is S2 for every projective vanely
 X over K .
Proof: We have $f: X \to \mathbb{P}_K^n$ surj K finite.
 $X \hookrightarrow \mathbb{P}^n$. $W_{\mathbb{P}_K^n}$ exists, hence W_X exist.
 $f_X W_X$ is \mathcal{F}_0 to a locitly free shift
 $U_{\mathbb{P}_X}^{OI}$ morphism. So it is S2.

Corollary: X proj schome of pure dim n over K. F is a coherent shert on X such that supp F has pure dimension n. Then, the following conditions are substitud: (1) If Fis CM, then Homer (J-wx) is CM The converse is true if F is a Sz sherf. (2) If X is S2, then Ox is CM iff Wx is CM **Proof**: 1) $f: X \longrightarrow \mathbb{P}^n$ surjective and finite $\mathcal{F} = is CM \iff f * \mathcal{F} = is locally free$ $\mathcal{H}_{om} \otimes (\mathcal{F}_{\ell} \otimes \mathcal{W}_{\lambda})$ is $CM \iff \mathcal{F}_{\lambda} \xrightarrow{\mathcal{H}_{om} \otimes \mathcal{W}_{\lambda}} (\mathcal{F}_{\ell} \otimes \mathcal{W}_{\lambda}) + S_{2}.$ Homoipn (J*F, Wipn)

Duality Theory:

Theorem: X projective scheme of pure dim n over a freld k. S= a CM sheaf on X such that supp 5 has pure dimension h. Then, we have an isomorphism: $H^{i}(X,\mathcal{F}) \simeq H^{n-i}(X, \mathcal{H}_{om}(\mathcal{F}, \omega_{\mathcal{H}}))^{Y}$ **Proof**: $f: X \longrightarrow \mathbb{P}^n = \mathbb{P}$ be a finite surj morphism $H^{i}(X, \mathcal{F}) \simeq H^{i}(CP, f*\mathcal{F}),$ $f*\mathcal{F}$ is locally since \mathcal{F} is CM, serve foil for locally free $H^{1}(P, f_{n}\mathcal{F}) \simeq H^{n-1}(P, \mathcal{H}_{ome_{p}}(f_{n}\mathcal{F}, w_{p}))^{\vee}$ by Serre duality, and furthermore H^{n→} (P, Homop (4 n F, wp)) ~ moht 2dj. $H^{n-i} (P, f * Hom o_{\infty} (\mathcal{F}, \omega_{\infty})) \simeq$ $H^{n-i} (X, Hom (o_{\infty} (\mathcal{F}, \omega_{\infty})).$ H'(X, S=) is dual to Hⁿ⁻ⁱ(X, 7Com ox (F, wx)).

Proposition: X projective CM scheme of pure dim n.
over a field k and
$$D \subseteq X$$
 Carther divisor. Then
 $WD \cong WX(D) \supseteq OD.$

Proposition: Let X be a normal projective variety of dim n
over a field
$$\kappa$$
. Then $W_X \cong O_X(K_X)$.

Adjunction formula: X smooth &
$$D \subseteq X$$
 smooth Carbier.
Then $(K_X + D)|_D = K_D$.

Remark: If S is Carbier in codimension two, then.

$$(K_{X} + B + 5)I_{5} = K_{5} + BI_{5}$$
. Showing

×

If you have guotient singularities in codimension two. 5.2

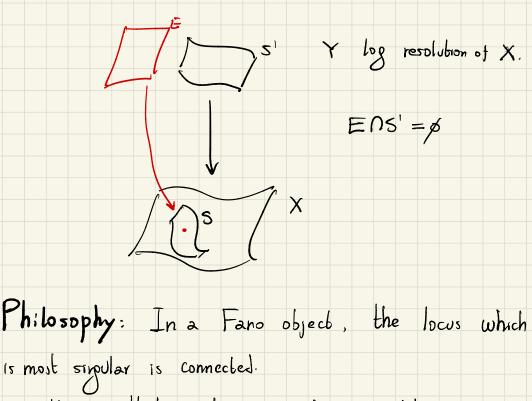
$$(K_{x+B+S})|_{S} = K_{S} + B|_{S} + \sum_{\substack{p_{i \leq S}}} (1 - \frac{1}{m_{i}}) P_{i} \qquad \int Z_{x+z}$$

where Pi is a cod two point of X which is orbifold of order mi.

Adjunction: If the size of (X, B+S) are nice then the sig of (SiBls) are nrce. Invoj adjunction: If (S, Bls) has nice sing then so does (X, B+5). Proposition: X normal, S normal Weil carbier in cod 2. - S closed B = Z, 6; B; 20 Q-divisor Assume Kx+5+B is Q-Carbier. Then: (X,B+5)total discrep (center SZ, S, Bls) > plt discrep (center SZ, X, S+B) 2 V (J.Bls) Kit discrep (center NSSZ, X, S+B) **Proof**: $f: Y \longrightarrow X$ lop resolution of (X, S+B) $S' = f \overline{x}' S$, $f \overline{x}' (S + B)$ is smooth, E; exc which intersects S' then $center_{X} E; \subseteq S$.

 $K_{Y+S'} = f^{*}(K_{X}+S+B) + Z'e_{i}E_{i}$. $K_{s'} = K_{T+s'} |_{s'} K_{x+s+B} |_{s=K_{s+B}}$ $K_{S'} \equiv f^* (K_S + B|_S) + \overline{Z}'_e; (E; \Omega S').$ S' 15 disjoint from f=B, hence if E: NS' ≠\$ then E_i is f-exc and center $E_i \subseteq S$. Hence, we showed that every lop discr. which happens in $S' \longrightarrow S$ also happens in $Y \longrightarrow X$ in such a way that the center lies inside S. I. Ei If Ei is exc over X, then Eins' may not be exc over S. x J^s

Problem: discrep of (S, B|s) are me bit those of (X, B+S) are bed. E exceptional over X with $\alpha_E(X, B+S) < 0$.



The theorem that realizes principle is called

Kollar - Shokurov Cormee bedness Theorem.

Definition: (XiB) à log pair. Z ⊆ X is a log canonical conter if there exists E over X with $\alpha_E(X,B) = 0$ • $C_E(X) = Z$ We denote by LCC(X,B) the Union of all locis. t is a closed subset. Theorem (Kolliv - Shakurov connectedness): $X \longrightarrow Z$ proj morphism, (X,B) lc, $-(K_{x}+B)$ ample over Z, then LCC (X,B) is connected over Z. Q-trivial big + nef at most two comp Suffices. Example: • b \mathbb{P}' deg $K_{\mathbb{P}'} = -2$. • b t = -2. **Remark:** field k is C1 is every homogeneous $f(x_0,...,z_n) \in k[x_1...,x_n]$ of deg ≤ n h2s a hon-trivial zero. (Fano varieby) PAC every peometricilly integral K-var has a K-point. Ax: Is every PAC field of chin O Cs ? Yos.

Theorem: Let
$$g: Y \rightarrow X$$
 be a proper biraboul morphism.
Y smooth, X normal. Let $D = \Sigma_{i}^{i} di Di$ sine Q-divisor on X.
such that $g \neq D \ge 0$ and $-(Kr + D)$ is g -nef. Write
 $A = \Sigma_{i}^{i} di Di$, $g = F = \Sigma_{i}^{i} di Di$.
Then $Supp F = supp LFJ$ is connected in a neyphborhood of eny
fiber of g.
Proof: $FAI - LFJ = Kr - g^{*}(Kr + D) + iAi + iFi$.
By KV vanishy $R^{i}g \neq Or(FAI - LFJ) = 0$
 $O \rightarrow Or(FAI - LFJ) \rightarrow Or(FAI) \rightarrow O(LFJ(FAI)) \rightarrow 0$
 $Connected.$
 $g \neq Or(FAI - LFJ) \rightarrow S \neq O(LFJ(FAI)) \rightarrow 0$
 $Connected.$
 $g \neq Or(FAI - LFJ) \rightarrow eff \implies g \neq Or(FAI) = 0$
 $G \rightarrow Or(FAI - LFJ) \rightarrow Or(FAI) \rightarrow 0 LFJ(FAI)$.
 $FAI = g - exceptional , eff \implies g \neq Or(FAI) = 0$.
 $g \neq O(LFJ(FAI)) \rightarrow Q = g = OFJ(FAI)$ in a neyphorhood of $g^{-i}(rx)$.
 $g \neq O(LFJ(FAI)) \rightarrow Q = g = OFJ(FAI)$ is $g - exceptional , eff \implies g = OFJ(FAI)$.

heorem: Let X be a normal variety and SEX normal Weil divisor which is Carbier in cod 2. B 20 Q-diversor such that Kx+5+ B is Q-Carbier. Then, (1) (X,S+B) is plt near S iff (S,Bls) is kill (2) Assume in addition B is Q-Carbier and S is klb Then (X, 5+B) is le near 5 iff (S, Bls) is le Proof: ->>> is a previous prop. We need to prove \Leftarrow) $p: \Upsilon \rightarrow \chi$ log resolution of $(\chi, 5+B)$. $K_{T} + D = g^{*}(K_{X} + S + B), S' = g_{\overline{X}}'S, F = S' + F'.$ where F' configures a comp of coeff ≥ 1 . By adjunction Ks' = 8* (Ks+Bls) + CA-F')ls. (X,B+5) is plt near S iff $F' \cap g^{-1}(5) = \phi$. $(S_1 B|_S)$ is kell iff $(F')^{\geq 1} \cap S' = \emptyset$. By K5 connectedness, xeS, there exists Ux EX s.t. F (S'U(F')²¹) Ng⁻¹(Ux) 15 connected, hence F'ng-'(Ux)=\$, moving & around S (we finish the proof of the statement. D.

Adjunction to higher codimension centers: (X,S+B) sing (S,Bls) sing (XIB), Z is a log canonical center of (XIB). codm(Z,X) = 1codim (Z, X) >2. define (Z, Bz) such that the sny of (X, B) around Z can be compared to those of (Z, Bz)? Y $g^{*}(K_{x}+B)|_{E} = K_{T}+B_{T}+E|_{E}$ KE + BE. is trivial over Z. Z" g Z Z KE+BE~0.20. we want to write $K_E + B_E = P^* (K_Z + B_Z + M_Z),$ > measures the Variation of moduli. mezsures the sing of the fibration O